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Abstract

The ability to easily manipulate objects in a zero gravity environment will play a
key role in future space activities. Emphasis will be placed on robotic manipulation.
This will serve to increase astronaut safety and utility in addition to several other
benefits. It is the aim of this research to develop control laws for the zero gravity
robotic end effector designed by engineers at NASA Goddard. A hybrid force/position
controller will be used. Sensory data available to the controller are obtained from an
array of strain gauges and a linear potentiometer. Applying well known optimal
control theoretic principles, the control which minimizes the transition time between
positions is obtained. A robust force control scheme is developed which allows the
desired holding force to be achieved smoothly without oscillation. In addition, an
algorithm is found to determine contact force and contact location.

1 Introduction

There is no doubt that the task of gripping and handling objects in space 1 is an impor-
tant one. Much diagnostic servicing and repair of existing space structures (e.g. satellites)
require physical manipulation of the structure. Processing materials in space is an essen-
tim step in the evolution of space technology. With the goal of constructing large space
structures in mind, earth based processing becomes both physically and economically im-

practical. This fact demands that the processing of materials be moved to the construction
site ...into space.

It is evident, then, that robotic manipulation must play a vitally important role in
the future of space activities. Already, telerobotic manipulators have been successfully
employed in a full range of important space activities (e.g. satellite retrieval). Thus, v
the design of lightweight, dexterous robotic manipulators has become a significant and
indispensable component of aerospace research and development in the past few years.

Designing the end effector portion of the space manipuIatorl one must address the
problems associated with gripping objects in a zero gravity environment. Reaction forces
and torques which are usually damped by various mechanisms (gravity, friction, interaction
with the atmosphere) on earth, can create problems in space where these mechanisms are
absent. For example, an astronaut attempting to turn a valve on a relatively large space
vehicle must be securely attached to the vehicle, otherwise, instead of turning the valve, the

torque created will serve to turn the astronaut relative to the vehicle. This is by no means
the only difficulty. Consider the following scenario: A master slave arm is being used to
llnk beams for a large space structure. The sockets used to link the beams are transported
on trays to the locations of the beam joints. Due to the zero gravity environment, the
sockets must be fixed in place by some type of fastener to ensure they remain on the tray.

Designing the end effector to release the fastener while maint_aining a firm grasp on the
socket will solve both the problems associated with torques and reaction forces, as well as
the problem of minor perturbations dispersing the sockets in random directions.

Along this line of think_ing, NASA has developed the gripper/nut runner. This specially
designed end effector has two fingers which together have one degree of freedom. Similar
to a vice, the width of the opening is the only variable. Centered between the fingers is a

device for unscrewing nuts. Having one degree of freedom, the nut runner will be actuated

by wrist rotations.

The aim of this research is to develop control laws (in some optimal sense) for the

gripper portion of the end effector. A hybrid force/position controller will be used. Sensory

_The term space will be used synonymously with the term _zero gravity environment _.
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armature resistance
armature inductance

torque constant
back emf constant

rotor inertia

internal gear ratio
internal gear efficiency
screw lead

screw efficiency
rack and pinion efficiency
mass of moving parts

25.2 gl

7.2 rnH

0.4141 Nm/A
0.6901 V/rad s-'
2.9x 10 -4 kgm s
27.94
0.6
1.6 rnm
0.4
0.7

1.14 kg

Table 1: Summary of System Constants

data available to the controller are obtained from an array of strain gauges as well as a
linear potentiometer. Applying well known optimal control theoretic principles, the control
which minimizes the transition time between positions is obtained. A robust force control
scheme is developed for smoothly achieving the desired holding force without oscillation.
An algorithm is found to determine contact force and contact location in order to ensure

a secure grasp.

2 End Effector Model

For analytical purposes it is necessary to establish a mathematical model of the system.
The model development will be broken down into three sections. The first section details
the actuator model. The basic model is standard and is available from various engineering
texts. Added to the model in the second section are the effects of the gearing and the
inertia of the mechanical system. Finally, the third section gives the complete system
transfer function, as well as the position and force transfer functions.

2.1 Actuator Model

J
The finger actuator is a permanent-magnet DC motor. Models for these motors can be
obtained from various sources [1], [2]. The equations for the motor are as follows:

J,,_,,(t) = T,,(t)- TL(t) (2.1)
Lama(t) = ea(t) - R_,i_(t)- eb(t) (2.2)

T.,(t) = kii_(t) (2.3)
; eb(t) = kbw,,_(t). (2.4)

Selected for the actuation, the TRW 5A540-10 MM Planetary Gearmotor is manu-

factured with gears inside the motor housing. The gearing has the effect of decreasing
the angular velocity and increasing the torque. The gear ratio is 27.94 and the minimum
efficiency is 0.6. A summary of the system constants can be found in Table 1; these con-

stants include effects of the internal gearing. Motor variables are summarized in Table 2.

Additional frictional terms have been neglected in the model development. They will be
treated as disturbances to the control system.



[ variable definition

ca(0
io(t)
eb(t)
,,'re(t)
T,,(t)
TL(t)

'control voltage
armature current
back emf

angular velocity
motor torque
load torque

Table 2: Motor Variables

2.2 Mechanical Model

The transmission mechanism used is an acme screw. The acme screw serves to trans-

form rotary motion of the motor to linear motion needed to move the fingers. A screw
with a small lead angle, e = 1.6 mm, was used so that larger finger tip forces could be
developed while using a smaller motor. As a trade-off, the maximum velocity attained
during opening and closing is lower. Another benefit of having a small lead angle is that
the screw is self locking under reasonable load conditions. This is an important feature
since it will allow the end effector to hold objects without using power. This property
hdps to eliminate problems created because of poor heat dissipation in space.

v

Used to link the motion of the fingers, the rack and pinion gear's effect is to move the
fingers at the same velocity in opposite directions. The model, which is developed for the

force and velocity of one of the fingers, is effected only by the efficiency, p, of this gear.
1

Deformations of the finger components are assumed to be negligible. This assumption

is reasonable since operating forces are far below the magnitude necessary to result in
significant deflections of the aluminum body. Because the motion is strictly linear the
moving parts in the finger assembly are treated as a point mass. The mass of the moving
parts is approximately 1.14 kg.

Since the errors due to backlash caused by the gears (the motor's internal gears, the

acme screw, and the rack and pinion) will be within desired positioning accuracy of
+0.25cm, they can be ignored in the model development. Position control will be em-
ployed only to achieve an approximate desired finger opening; force control will be used
upon encountering an object. Therefore, a coarse positioning scheme will be sufficient.

Ideal gears are initially assumed in the derivation. A gear is termed ideal if it has no
moment of inertia, no friction, and a perfect meshing of teeth. For an idealscrew, the
translation from angular velocity of the motor output shaft to linear velocity of the fingers
is

=

and the transformation from torque to force is

Fo(t) = ?T,(t) (2.6)

where Tc(-)and Fc(') denote the coupling torque and force respectively between the screw
and the nut. Then from D'Alembert's Law for torques and Newton's Law for forces

= T,,(t) -To(t) (2.7)
FL(t) = Fc(t)- mf/L(t). (2.8)



Combining these equations and applying the screw equations 2.5 and 2.6 yields

(2.9)

Of course in reality gears are not ideal. To correct for this efficiency terms, p arid p,
are incorporated into the model to account for the losses in the non-ideal screw and rack
and pinion gears respectively. For an acme screw the efficiency is approximately 0.4, and
for the rack and pinion 0.7.

m+FL(t) = pp--cTm(t) - m)eVL(t) (2.10)

For simplification define M _ (_t_)2Jm + m and Fro(t) zx, ppt[_T,_(t ) yielding the final

dynamic equation
Fn(t) = F,_(t)- M_rL(t). (2.11)

By combining equations 2.2-2.5 the final electrical equation is found to be

2__ • 27r pk eo( ) = + R Fm(0) +  Pk kb--/rVL(t) (2.12)

A summary of the model constants is given in table 1.

2.3 System Transfer Functions

By taking the Laplace transform of equations 2.11 and 2.12 and rewriting them in
matrix form, the system transfer matrix is:

(F,_(s) "_ I {" _-I_pk, kb ppk, Ms'_ ( vL(8)h
\

When calculating the position transfer function, P(s) = *_)L(s), the load force, FL(S),

can be assumed to be identically zero. This is justifiable since position control mode will
only be used if there are no external load forces. The position transfer function is

P( s_..._) #pkl (2.14)
e_(,) = s(6ML_s2 + 2A_MR_s + _-i_Pk, kb)"

The force controller will only be used once a contact force has been detected on one
of the fingers. Recall that the target object must be bolted firmly in place in a zero
gravity environment. Thus once contact is made, position will become constant forcing
the velocity to zero. From equation 2.11, this implies that the load force, FL, equals the
motor force, Fro. With these additional constraints the force transfer function is

Fm(_____)= _,P_._ (2.15)
e_(s) L_s + R_"

3 Position Controller

Available from a linear resistive potentiometer, the position information is accurate to
±.25 cm. For the purpose of controller development further mechanical detail of this
sensor is not needed.

4
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Figure 1: Theoretical vs. Actual Position Transfer Function

3.1 Model Verification

i

By measuring the gripper's response to a series of sine waves of _rarying frequencies, the
true Bode plot for position may be obtained (figure 1). The accuracy of the true Bode plot
for frequency greater than about 3 Hertz is extremely poor due to backlash in the system;
this is essentially the mechanical cutoff frequency of the system. System performance will
not be adversely affected by this low cutoff frequency since the fingers are not intended to
make rapid changes in direction.

The actual Bode plot reveals that for the range of operation of the system, only first and
possibly second order dynamics are evident. This implies that the third order dynamics
caused by the nonzero inductance can be ignored, and thus it can be assumed that the
inductance is zero when developing the position controller. Additional friction inherent in
the system is apparent in the diminished response of the actual Bode plot.

3.2 State Space Realization

Substituting L_ = 0 into equation 2.14 gives:

P( s___)_) #pki ct (3.16)
ea(s) = s(_Mn,s + 2---[ppkikb) = sis + c2)"

This transfer function describes a stable linear time invariant system which has one input,

the control voltage e+(.), and one output, the finger position P(.). The minimal realization
has two states, finger position P(-), and finger velocity VL('). Ia state space form, the
minimal system is written as

{ _(t) = Ax(t) + buit )y(t)=ex(t) (3"17)

where _'

(0 1 ) b= (0) c=(1 0). (3.18)A = 0 --C2 ' Cl '

Note that since this realization is minimal, it is both controllable and observable. Also,
stability of the system guarantees that the eigenvalues of A have nonpositive real part.

3.3 Optimal Position Controller

It is desirable to determine the control which moves the fingers from the initial state
(position, velocity), x0 = (xo 0)', to the desired final state, x! = ix! 0)', in minimum



time with the constraintthat ]u(t)[ _<M. Such problems have been extensively studied
in optimization theory. The solution to the minimum time problem follows from the well

known Pontryagin Minimum Principle (PMP)[3].

Since the system is linear and controllable, a time optimal control, u*(t), that transfers
the initial state x0 to x/would clearly exist if there were no bounds on the control action.
Even with the bounds on the control function, the reachable set at each finite time is
convex and bounded and contains the origin. Therefore a time optimal control exists by
simple translation of the origin.

Applying PMP it can be shown that the optimal control has the form u'(t) -
-Msgn(b'p'(t)), where the costate p'(t) satisfies lb'(t) = -A'p°(t).

The Pontryagin Minimum Principle provides both necessary and sufficient conditions
for optimality since the system is linear and the constraints convex. Finally the Hamilto_
nian has a unique global minimum (since it is a minimization of a linear function over a
compact convex set). From this and the sufficiency it follows that the optimal control is
unique.

3.3.1 Switching Time

The conditions of PMP do not contain any explicit information regarding either the

initial costate, p*(0), or the terminal costate, p*(T*), ttowever, they do imply that the
costate, p*(t), must be a nonzero vector Vt E [0, T'].

The set of feasible controls, 2-, is practically limited by the maximum armature voltage,

which implies M = 24V. And since b_p'(t) = clp2(t), and cl > 0, the set of feasible
controls is

( { u = Msgn(p2(t)) if p2(t) _ O } (3.19)7 = u: lul < M if p2(t) = 0 "

Another physical constraint is that the control be continuous. Thus if _ changes sign the

control must vary continuously from M to -M. The times at which/_ = 0 are termed
the switching times. The switching times vary with the initial and final states.

The solution of the costate equation is

p_(t) = p_(0) = constant (3.20)

1 .
p_(t) = (p_(0)- 12p;(0))exp(c2 ) + c2Pl(0 ) , (3.21)

Since p_(.) is monotonic in t, the control voltage changes sign at most once. Without
information of the initial or final costate, the switching time cannot be determined from

these equations.

Disregarding the question of determining the initial of final costate, it is desirable to
investigate which control .among the feasible set, Jr, steers the given initial state to the
desired final state. Solving the state equation yields

zl(t) = xo+ClU(t)t + _(1-exp (3.22)
C2 c_

x2(t) = ClU(t)(1 - exp (-c2t)). (3.23)
C2

By substituting for u(.) in equations 3.22 and 3.23, one can determine the feasible control
which achieves the desired goal. This control is the optimal control.

6
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Proper Grasp Conhgurslion

Improper Grasp Configurations

B. Grasp Configurations

Notice that the optimal controlis directly a function of time, and indirectly a function
of position. In order to make the controller robust to disturbances, it is necessary that
the dependence on position be made more precise. That is, a more desirable form for the
control would be

24 xo < Z < (_u(z) : -24 a < z _<zj (3.24)
0 elsewhere I

where _ is the optimal switching position and x0 and x! are the initial and final positions
respectively.

Using CONSOLE 2, a parametric optimization package, along with SIMNON, a non-
linear simulator, the optimal switching position a was determined. In every case the
switching position was found to lie within the position error margins of -t-.25 cm.

4 Force Controller

Strain gauges have been widely used in the field of stress analysis since 1940. They are
one of the most accurate, sensitive, versatile and easy-to-use sensors available; but in spite
of this, the proper and effective use of them requires a thorough understanding of their
characteristics and performance [6].

!

Strain data is obtained from an array of four strain gauges on each finger (figure 2).
From the strain data, both contact position and force can be calculated. This information
will be used to control the holding force as well as to detect an improper grasp.

The ability to detect an improper grasp is important since a dropped object may not
be easily retrieved. By calculating the contact force and contact locations the security of
the grasp as well as the control action needed to correct any errors may be determined.
Since the dimensions of the target objects _re known, position information may be useful

as well. Examples of possible grasp configurations are given in figure 2.

4.1 Mechanical Model

In this section a functional mapping, H, is derived to approximate the mapping

:The implementation details of CONSOLE and SIMNON can be found in [4] and [5] respectivel_.

7



constant/variable definition value

a

b

d13
dl4
E
v

G

dz
d 1
d _

el
F

F.
MI
M. 1.

e_

Ey

beam width

beam depth
distance between gauge 1 and 2
distance between gauge I and
distance between gauge 1 and

Young's modulus for aluminum
Poisson's ratio for aluminum l
shear modulus for aluminum

horizontal distance: gauge 4 to force
vertical distance: gauge 1 to force

vertical distance: gauge 5 to force

horizontal distance: gauge 3 to force

horizontal distance: gauge 7 to force
equivalent point contact force

x component of F
y component of F

z component of F, 2. to finger face

Fyd_ moment about x axis (finger 1)

F_dz + Fzd_ moment about y axis (finger 1),
-F_dz moment about x axis (finger 2)

F=d= + F_d_=moment about y axis (finger 2)

shear strain in xy plane
strain in x direction

strain in y direction

1.25 cra
1.5 era
1.8 era
0.9 era
0.3 cra

10.4 N/ra 2
0.32

3.93 N/ra 2
2.5 cm

Table 3: Force Sensor Parameters
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Figure 3: A. Contact Force Vectors B. Force and Moment Diagram

where [IR
F= F2 : FieIR 3, and d= d2 : d_E i= 1,2 (4.26)

This mapping represents the continuous functional relation between the vector formed by

the contact force and contact position on each finger, and the strains at the eight gauge
locations. Taking into account the mechanical constraints of the physical situation, the

dimensionality of this mapping can be reduced.

Assuming that the object has made contact with both fingers, the magnitude and
direction of the x and z components of the contact force, with respect to each finger, will
be the same. The y components will be equal in magnitude, but opposite in direction
(figure 3). That is F2 = (Fax,-Fau, Flz)'. (To simplify notation the subscript 1 will be
deleted henceforth). The location of the contact on the face of each finger may be different
but the z component is constrained by the mechanics of the gripper. Approximating the
face of the gripper to be flat allows the z constraint to be taken as cqnstant, i.e. dz = c

t g l-

and di= (d=, dy) i = 1, 2. Thus knowledge of three force components and four position
components is sufficient to approximate H. Hence the mapping H may be represented as

_=_(p|/\ IR3 lit,s IR s
: X _-_ (4.27)

\ /

with

E IR 3, d= : dleIR 2 i=1,2. (4.28)

In order to determine the contact force and grip points given the strain gauge readings,
the inverse mapping must be determined.

_ {F)=/\/I-_(e):IR s IR3x]R s. (4.29)
' \ /d _-+

The detailed derivation follows.

By locating the strain gauges on the rectangular portion of the gripper finger, any effect
induced by the irregular shape of the upper finger is nullified, and thus the finger can be

modeled by a beam of rectangular cross section with width a, and depth b. Problems
related to calculating the strains in rectangular beams have already been studied in depth
in the fields of mechanical and materials engineering [7]-[8].



A contact forceconsistingof any combinationof point contacts,line contacts,and
surfacecontacts,maybe representedbyanequivalentsinglepoint contactwith aspecified
contact forcemagnitudeand location; thus it is sufficientto consideronly singlepoint
contactforces.Eachcontactforce,F, can be broken into three components, [F= F_ Fz] T.
The z component is of greatest concern since this is the holding force. In a proper grasp
both the x and y components should be zero.

To clarify the computations, the component forces and their induced moments will be

treated separately (figure 3). The forces will be thought of as having equal magnitude
and direction, but no horizontal offset from the vertical axis of the beam. In the y
direction, the force causes tension or compression, while in the x and z directions, the

forces induce bending. The corresponding moments, M_ = Fudz, about the x axis, and

M_ = Fzd= + Fxdz, about the y axis, induce bending and torsion respectively (similarly
for the moments M_ and M_ of finger 2). By applying superp(_sition a the resultant effect
of the tension/compression, the bending, and the torsion canbe calculated by summing
their separate effects.

To begin calculation of the forward mapping, ._, an explanation of the different types

of strains caused by the contact force is given[8/. The strain due to bending moment M
in a rectangular beam is

6M

e = ba2E. (4.30)

In cases of nonuniform bending a shear strain is induced in the 'sides' of the beam. Nonuni-
form bending occurs if the moment is not constant throughout the beam. This is the case
when the moment is generated by a force, F, on the beam; the moment varies with distance
from the force. For a rectangular beam this is

3F (4.31)
"l_ = 2abG" l

The strain due to a tensile/compressive force, P, in a rectangular beam is

P

= (4.32)

The torsion created by the y axis moment, M, will cause only shear strain in the xy
coordinate reference frame. An approximation for the shear strain (on the front center of

each finger) is given as in [8] by

M

7,:_ = 0:235ba2 G. (4.33)

Oriented vertically on the finger, gauges 1, 2, 4, 5, 6, and 8 are not affected by torsion
(figure 2). Gauges 3 and 7 though, are affected by the torsion as well as the the other

strains. Oriented at 45 ° to the coordinate axis, these gauges are aligned with the principle
axis of pure torsion; thus the strain measured due to torsion is maximized.

Applying equations 4._0 and 4.32, equations for the strains 4 at gauge location i, i E

{1, 2, 5, 6} are as follows:

6 F_d_ Fu 6F_d_ (4.34)
el = ba2 E + _ + ba2 E

31n general, the principle of snperposition is valid for cases of loading where the magnitude of the stress
and deflection is directly proportional to the loaA.

_The sign convention adopted here assigns tensile strains a positive value. Caze must be taken when
developing the strain equations since a positive force may cause compyession at the location on the finger
where the measurement is taken.

10
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6Fz(d_ + dr2) Fy 6F_dz (4.35)
ba2 E + _-_ + ba2-----_

6Fzd_ F_ 6F_d, (4.36)
ba2 E baE ba2 E

6Fz(d_ + d,2) Fy 6F_dz (4.37)
ba2E baE ba2E "

The first term in each equation is due to the nonuniform bending induced by the force Fz.

The second is due the tension/compression induced by the force Fv. And the third is due

to the uniform bending moment about the x axis associated with F_.
!

The equations for the strains at gauge location i, i E {4, 8}_, on the side of the gripper

finger, follow similarly from equations 4.30 and 4.32: !
i

6Fx(d_ + dr4) Fy ' (4.38)
e4 -- ba2 E + --baE

-6Fx(d_ + d14) F v (4.39)
Es = ba2E baE"

Again, the first term is due to the nonuniform bending which, in this case, is induced by
the force Fx. And, just as above, the second term is due to the tensile strain induced by

the force F y.

The calculations for gauges 3 and 7 are a little more complicated. The strains that
are described thus far have been determined with respect to the xy coordinate reference
frame. In order to derive a formula for the strain measured at strain gauges 3 and 7,
the contribution of strains in the xy reference frame to the normal' strain in a frame
rotated -45 ° must be determined. This derivation can be found in reference [8]. With
O the angle of relative orientation of the coordinate frames, _0 = e_:cos2(0) + % sin2(0) +

7xv sin(0) cos(0). Letting 0 = -45 °, and applying the equation at gauge locations 3 and 7

1 (6rz(  +d,3) 6r d, F+d +
e3 = _ \ _a_ + _ + ba2E 2abG "O"-_3"_a-_G] (4.40)

1 (6F_(_ + d13) Fy 6F_dz 3F_: F_ + F_d_
er = -_ \ -_a_ baE ba2E 2abG _.23_ba._T-d ]. (4.41)

To help clarify this derivation, equation 4.40 has been broken down into its components.

e_ = 0 (4.42)

6Fz(d_ + dx3) F_ 6F_d_ (4.43)
QI = ba2 E + _ + ba2----_

3Fx F,d_ + F,d, (_t.44)"
7_ - 2abG + 0.235ba2G

The equation for % is derived exactly the same way as equations 4.34-4.37. The first shear
strain term is caused by the nonuniform bending induced by the force F=. The second

term is due to the torsion caused by the moment My. The deriwtion is identical for ev.

Now given the strain measurement from gauges 1 and 2, or gauges 5 and 6, the mag-
nitude of the holding force, F_, can be calculated,

ba2E(e2 - et) ba2E(e6 - _s) (4.45)
F, = 6dr2 = 6d12

11



Figure4: Ezperimental Setup for Accurate Force Measurements

The calculation of the inverse mapping for the other components was accomplished
using the symbolic algebra package MACSYMA. Due to the length and complexity of
these equations, they will not be given here. Knowledge of their existence is sufficient for
the purposes of this paper.

4.2 Determination of Holding Force and Contact Location

In the previous section it was proven theoretically that knowledge of the output of the
eight strain gauges is sufficient to uniquely determine the location and magnitude of the
contact force on both fingers. Unfortunately, the accuracy of the derived model may be
affected by various disturbances caused by the unmodeled effects of transverse sensitivity,
gauge misalignment, zero drift, and temperature dependence, the accuracy of the derived
model may be effected. A controller design based on experimentally measured data should
be more robust to these disturbances.

An experimental setup for accurately applying forces, Fz, perpendicular to the face

of the gripper finger is depicted in figure 4. With this setup it is possible to empirically
measure the sensor output for various holding force magnitudes and positions. Then, from
the data, the functional relationship

F) B-1(¢) irt8 m3 ms× (4.46)
(] / --

can be determined. Note that for this setup F_ and Fu are both zero.

The equations developed in section 4.1 which express this relation mathematically
are nonlinear (and continuous). The approximation of a continuous nonlinear function
is a natural application for neural networks s. It has been shown by Cybenko [10], that
continuous functions of finite support may be approximated by a feed forward neural

network with a single (finite) hidden layer. It is thus justified that this topology be used
here. Whereas the functional approximation problem could be solved by choosing the
form of the solution to be like the model and adjusting the parameters; the neural net
solution has the additional advantage that the form of the solution need not be assumed.

The sufficiency proof in Cybenko's paper is nonconstructive and thus does not indi-
cate the required number 'of neurons in the hidden layer. Using gradient descent (back
propagation) to set the weights, the number of neurons is* set by trial and error (i.e. If
the network can converge to the solution given by the data in the training set, there are
enough neurons in the hidden layer.).

For the case with F_ and Fu both zero, the network solution is found (see section 5).

SAn in depth discussion of neural networks is beyond the scope of this papgr. An excellent introductory

reference is the book by Rumelhart and McClelland [9].

12



4.3 Force Controller

Only knowledge of the holding force, F,, is necessary for force control. Once the
desired holding force has been attained at both fingers the conta_ct locations and other force
components can be calculated. There are several reasons for this control scheme. First,
knowledge of the holding force is sufficient for the task of securing the grasp; knowledge of
the contact locations and other force components is necessary only for assuring a proper
grasp. Second, the holding force can be calculated as linear combination of the readings
from gauges I and 2, or gauges 5 and 6 (equation 4.45). The calculation complexity for
the other variables is much higher, and involves readings from more of the strain gauges.
Both the additional readings and calculations are time expensive and their incorporation
into the control loop should be avoided if possible. Third, the contact locations and other
force components cannot be determined unless contact is made to both fingers. In the
case where contact is made to only one of the fingers, the gripper must be moved to center
the objectbetween the fingersbeforethe contactlocationand otherforcecomponents can
be calculated.

Because the surfaces of the gripper fingers are not compliant, attempting to implement
a minimum time controller may cause oscillation. Instead an attempt will be made to

achieve a smooth response.

The model of the force response, as derived in section 2, is that of an asymptotically

stable first order system. Such a system is robust to parameter variation, since the only
effect of parameter variation would be to translate the poles of the force transfer function
in the open left half plane. A typical controller for a first order system is a simple high gain
controller. Theoretically, any finite positive gain could be chosen without destabilizing the

system, however, chosing a gain which is too large may cause instability due to unmodeled
dynamics. In addition, the gain is physically limited by the constraint on maximum

armature voltage of 24V.

The force sensors are the most significant possible cause of feedback destabilization of
the force control loop. This is due to the slow response exhibited by the strain gauges

when a large force is applied then taken away. Once the force has been removed, the
strain gauges may still detect its presence for a very short time. This could easily lead to
oscillation. To avoid this a dead band can be put in the control algorithm such that if the
measured force is close enough to the desired force, no control action will be taken.

5 Hardware Implementation
i

Developing hardware for space applications is a demanding task. In addition to those
problems caused by a zero gravity environment, there axe a host of others due to the
harsh ambient variations associated with earth orbit. A satellite in geosynchronous orbit

about the earth is subjected to variations in temperature alone in excess of several hundred
degrees centigrade. Specifically, temperature specifications for the space station hardware
state that all equipment must be able to withstand temperatures of -150°C for 28 minutes
and temperatures of 200°C for 55 minutes during each 83 minute orbit of the earth.

In such an environment, standard mechanical methods used for earth based devices
are inappropriate. For instance, the viscosity of typical mechanical lubricants varies wildly
with temperature rendering them useless in space.

Reliability becomes another significant concern in space engineering. From a purely
monetary standpoint, an operation failure in a relatively inexpensive component can po-
tentiaily disable the entire mechanism. Apart from fault-tolerant engineering consider-
ations (e.g. redundant design), it is imperative that each component be of the highest

quality.
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constant
R2 = R3 = R4
Rx nominal
V
GF

Table 4: Wheatstone Bridge and Bridge Parameters

Named above are only a few of the peculiarities associated with working in space.
Although these considerations are crucial to a practical working device, the initial design
phase may relax some of the specifications. Based more on financial than technical rea-
sons, components which do not quite meet specifications were chosen for the prototype.
For example, a brushed DC motor was substituted for a brushless DC motor. These
substitutions should not adversely effect the control methods and algorithms developed
here.

5.1 Sensors

°

Position information is measured using a linear potentiometer. With a minimum the-
oretical resolution of .025 cm, the errors in position due to the potentiometer will fall
within the accepted position uncertainty of -t-.25 cm.

Using an analog to digital (A/D) converter the potentiometer output voltage is made
available to the control algorithm. The equation which relates the sensor reading to gripper
opening in centimeters was calculated by direct measurements to be:

opening = 6.9 × 10-3(sensor reading) + 0.38 (5.47)

The constants were chosen to emphasize accuracy in the range of the smaller openings.

Since potentiometer resistance is sensitive to temperature variations, a resistive posi-
tion sensor would not be a wise choice on the final version. Alternatively, a similar sensor
(perhaps capacitive) can be used without effecting the performance of the control.

Force information is obtained via an array of eight strain gauges. The calculation of
the contact force and contact location from the strain data was described in section 4.

A Wheatstone bridge (figure 4) is used to measure the small change in resistance of the
strain gauge, Rx, which occurs as the material is strained. A linear approximation of the
relation between strain and measured output voltage is

(R1 + R4)(R2 -t- R3) AVAB (5.48)
e = VRxR3 GF "

Again with the aid of an A/D converter the sensor data is made available to the control
algorithm.

5.2 Neural Network

Using the experimental setup described in section 4, strain gauge readings were taken
for various holding forces and contact locations. 6 The tangential forces, Fx and Fu, are

6Data courtesy of Dr. Dipak Naik, Mechanical Engineering Department, University of North Carolina.
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Figure 5: Actual vs Calculated Values for Holding Force and Po'sition Offset

constrained by the experiment design to be zero. In addition, the face plate holds the

z offset exactly constant. By imposing these three constraints, the problem is simplified

considerably. In fact, the inverse mapping, _-1 can be completely decoupled. The inverse

mapping for finger 1 is as follows:

Fz = ba2Z(e2-el) (5.49)
6dn

dl2el (5.50)
- (E2- l)

.7ba2G

dr - 2E(e2 - el) (el(dl2 - d13) + d13e2 -- 2d12e3) (5.51)

The inverse mapping for finger 2 is similar.

The neural network weightings and biases for finger 1 (the long finger) were calculated

by the back propagation method. 7 To account for the software requirement that all inputs

and outputs of the training data set be normalized to the interval (0,1) define _ _ (ei +

20)/300. The neural network mapping is then described by

25

Fz - 1 + exp (-2.2 + 19.4_ - 20.8_ - .8_3) (5.52)

8

du = 1 + exp (-2.2 - 109.8_ + 85.5Q + 2.3Q) + 1 (5.53)

8
d_ = + 1. (5.54)

1 + exp (1.3 + 11.7_ - 22.6C2 + 31.3_)

. Plots of the actual mapping versus the the neural network mapping are given in figure 5.

These results are comparable to those obtained by Naik and Dehod" [11] using a truncated

Taylor series approximatibn.

The apparent error is due not only to errors in the neural net approximation of the

nonlinear function, but also to the inaccuracies in the training data. Some of the inaccu-

racies will be eliminated by the use of higher precision components for the circuit elements

such as the Wheatstone bridge and the strain gauges themselves.

rThe software for this w_ taken from the Parallel Distributed Processing Softwaxe Package by Rumel-
h_rt and McClelland.
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Figure 6: Positioning Accuracy

5.3 Computer Implementation

The time optimal position controller has been implemented on a Macintosh II equipped
with a MacAdios board for D/A and A/D conversions. The controller can position to
within -t-.25 cm of the desired position without overshoot. The accuracy of the positioning

at various openings is reported in figure 6.

Several problems due to strain measurement noise have arisen while implementing the
force controller. A significant improvement should be realized by use of higher quality
components and wire wrapped circuits. Until the noise problems have been solved, imple-
mentation of the contact force and grip point calculation algorithm is virtually impossible.
Variations in the strain gauge readings will cause significant errors in the calculations since
the neural network mapping is based on a certain set of training data. In spite of this
the force controller has been implemented but it cannot report an accurate holding force.
The operator has the option of choosing one of three levels for the holding force: high,
medium, or low. Addressing the problem of hitting an unexpected obstacle, the hybrid
force/position controller stops if the prespecified force level is achieved during positioning.

Although the successful implementation of the neural network approximation of the
mapping from strains to contact force and contact location has not been demonstrated, the
approach seems to be a good one. This method offers a simple straight forward approach
to this calculation which is unchanged by additional complexity of the mapping.

The control system block diagram along with flow diagrams of the control algorithm
can be found in figure 7. Some of the notation used in these figures is summarize in table
5. The estimates are calculated as described in the previous sectibns.

6 Conclusions and Future Research

A controller has been developed and tested for the gripper portion of the zero gravity
robotic end effector. It was determined that an optimal control exists which transfers the

initial finger opening to the desired opening in minimum time. This time optimal control
is unique and is constant with value equal to plus or minus maximum armature voltage,
the value of the control depending on the relative location of the desired final position.

I
A force controller has been developed which is based only on the holding force, per-

pendicular to the finger face. The holding force on either finger can be calculated from
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constant/variable CIR_, n = definition
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readings from eight strain gauges
potentiometer reading

contact force estimate(x, y, and z components)

contact location estimate ((5,5) = center)
desired gripper opening

desired holding force

current gripper opening estimate

current holding force estimate
motor control voltage (armature voltage)

maximum armature voltage
force controller gain

contact force threshold, _ 0
contact position threshold, _ 0

gripper opening threshold, _ 0
holding force threshold, _-. 0

strain threshold, _ 0

Table 5: Controller Notation

the output of two strain gauges on that finger by
?

ba:E(E2 - _1) ba2E(e6 - _5) (6.55)
F_ = 6dx2 = 6d12

for finger 1 and 2 respectively (see figures 2 and 3). By including the output of two
additional strain gauges on each finger the two tangential force components and the contact
location may be calculated as well.

For the simplified case considered in section 5, where the tangential force components
are constrained to be zero, the percent error between the actual mapping and the neural

net mapping is similar to that achieved by the truncated Taylor series used by Naik and
Dehoff [11]. It would be interesting to compare the results for a more general case.

The MacII design environment has been used for controller development and testing.
The next logical step is to transfer the algorithm to a dedicated signal processing chip that
can communicate with the central robot controller. Exact knowledge of the communication

protocol of the system is required for the completion of this; however, transfer of the control
algorithms should be straight forward since they are already coded in the C programming

language.

References

[1] K. Ogata, Modern C_ntrol Engineering. Elglewood Cliffs, N J: Prentice Hall, 1970.

[2] Electrocraft Corporation, ed., DC Motors, Speed Controls, Servo Systems. Elmsfor,

NY: Pergamon Press, fifth ed., 1980. r

[3] M. Athans and P. Falb, OPTIMAL CONTROLS: An Introduction to the Theory and
It's Applications. New York, NY: McGraw-Hill, 1966.

[4] M. Fan, L. Wang, J. Koninckx, and A. Tits, "CONSOLE Users Manual," Tech.
Rep. 87-212, Systems Research Center, 1987.

17



1 ' [z- -zl

t _'_ _.-_,o, I

I..t

l

Figure 7: Control System Block Diagram

[5] K. Astrom, "A SIMNON tutorial," Tech. Rep., Lund Institute Of Technology, July
1985.

[6]

[7]

[8]

A. Window and G. Holister, eds., Strain Gauge Technology. Essex, England: Applied
Science Publishers, 1982.

S. Timoshenko and J. Gere, Mechanics of Materials. New York, NY: Van Nostrand
Reinhold Company, 1972.

M. Spotts, Design of Machine Elements. Englewood Cliffs, N J: Prentice-Hall, Inc.,
sixth ed., 1985.

[9] D. Rumelhart and G. McClelland, Parallel Distributed Processing: Explorations in

the Microstructure of; Cognition. Cambridge, Ma.: MIT Ptress, 1988.

[10] G. Cybenko, "Approximation by superpositions of a sigmoidal function," Technical
Report, Tufts University, Department of Computer Science, October 1988.

[11] D. Naik and P. Dehoff, "Design of an Auto Change Mechanism and Intelligent Gripper
for the Space Station," Tech. Rep. NAG 5-922, NASA Goddard, 1989.

[12] C. Chen, Linear Systems Theory and Design. New York, NY: Holt, Reinhard and
Winston, 1984.

18

ORIGINAL PAG'Z 'S

OF POOR QUALITY



[13] "MACSYMA reference manual," Tech. Rep., The Mathlab Group, Laboratory for
Computer Science h,iIT, December 1983.

19


